
TECHNICAL REPORT
NATICKJTR-04/018

AD ______ _

THE Vl.O 'PUSHPIN' NIXEL 2-D

SELF-ASSEMBLING DISPLAY ARRAY

by
Joseph Jacobson
Neil Gershenfeld

and
Bill Butera

Massachusetts Institute of Technology Media Laboratory
Cambridge, MA 02139

August2004

Final Report
February 2001 -August 2003

Approved for public release; distribution is unlimited

Prepared for
U.S. Army Research, Development and Engineering Command

Natick Soldier Center
Natick, Massachusetts 01760-5056

20040902 066

DISCLAIMERS

The findings contained in this report are not to

be construed as an official Department of the Army

position unless so designated by other authorized

documents.

Citation of trade names in this report does not

constitute an official endorsement or approval of

the use of such items.

DESTRUCTION NOTICE

For Classified Docmnents:

Follow the procedures in DoD 5200.22-M, Industrial

Security Manual, Section ll-19 or DoD 5200.1-R

Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Docmnents:

Destroy by any method that prevents disclosure of

contents or reconstruction of the document.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collectio
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 JeHerson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall b
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE {DD-MM-YYYY} ,2. REPORT TYPE 3. DATES COVERED (From- To}
24-08-2004 FINAL FEB 01 - AUG 03

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

THE Vl.O 'PUSHPIN' NIXEL 2-D SELF-ASSEMBLING DISPLAY DARPA BAA DAAD16-00-R-0012

ARRAY
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORISI 5d. PROJECT NUMBER

Joseph Jacobson, Neil Gershenfeld and Bill Butera
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Massachusetts Institute of Technology Media Laboratory
20 Ames Street, Cambridge, MA 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ESI 10. SPONSOR/MONITOR'S ACRONYM(S)

US Army Research, Development and Engineering Command
Natick Soldier Center
ATTN: AMSRD-NSC-TP-S 11. SPONSOR/MONITOR'S REPORT

1 Kansas Street
NUMBER(S)

Natick, MA 01760-5056
NATICK/TR-04/018

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14.ABSTRACT

This report details the results of the MIT - RF Nixel Program. The RF Nixel Program represents a novel architecture for display
systems based on an ensemble of Nixel display elements. Each Nixel element comprises a display element (pixel), lightweight
computation sufficient to run self -assembling software code elements and local communications. A proof-of-principle hardware
implementation (The Vl.O 'Pushpin' Nixel2D array) was carried out and used to successfully run the gradient and coordinate
generating algorithms. Detailed simulation shows the viability of such an approach to render complex text and graphics.

15. SUBJECT TERMS

FLEXffiLE DISPLAYS ALGORITHMS
DISPLAY SYSTEMS CODING
COMPUTER ARCHITECTURE SELF ASSEMBLING

I PIXELS TP. XT PROrP.��TNn
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT

u u u u

GRAPHICS
COMPUTER PROGRAMS
COMPUTERIZED SIMULATION

NTXP.T�
18. NUMBER

OF
PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Henry Girolamo

19b. TELEPHONE NUMBER (Include area code)
508-233-5483

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES IV

PREFACE v

SUMMARY 1

1.1NTRODUCTION AND BACKGROUND 2

2. TECHNICAL APPROACH 2

3. THENIXEL DISPLAY 3
3.1 HARDWARE ARCHITECTURE 3
3.2 PROGRAMMING MODEL 6
3.3 SIMULATION TOOLS 7

4. TEXT DISPLAY 8
4.1 ANCHORS AND GRADffiNTS 8
4.2 2-D COORDINATES 10
4.3 TEXT RENDERING 11

5. GRAPHICS CONTROL 13

6. RELATED WORK 15

7. CONCLUSIONS AND RECOMMENDATIONS 16

REFERENCES 18

iii

LIST OF FIGURES

Figure 1. Process and Data Flow in Display Systems 3
Figure 2. The V1.0 4Pushpin' Nixel 4
Figure 3. Programming Model 7
Figure 4. Gradient- Run Time View 9
Figure 5. Gradient - Adaptation Procedure 10
Figure 6. Adaptation Rules for Gradient pfrag 11
Figure 7. Coordinate System: Construction and Adaptation 11
Figure 8. Text Seed: Positioning and Rendering 12
Figure 9. Text pfrag: Post Definition and Messaging Topology 13
Figure 10.Text pfrag: Adaptation Rules for Spawned Copies. 14
Figure 11.Translation and Scaling 14
Figure 12.A 2·D Array ofVl.O �Pushpin' Nixels Running a Gradient Algorithm. 17

LIST OF TABLES

Table 1. The Vl.O 'Pushpin' Nixel Parts List 5

IV

PREFACE

The RF Nixel Vl.O Pushpin Hardware Simulator and Software were developed by
the Massachusetts Institute of Technology Media Laboratory (MIT Media Lab) under the
program management of the DARP A-MTO Office, Contract Number DARPA BAA
DAAD16-00-R-0012, (Robert Tulis, PM). The interim program was completed under the
direction of the US Army Natick Research, Development and Engineering Command
from February 2001 to August 2003. The purpose of this program was to develop a
hardware simulator and software to demonstrate the feasibility of a new type of
distributed display based on self-assembling code. This is the final report for the interim
RF Nixel Program.

v

THE Vl.O 'PUSHPIN' NIXEL 2-D SELF ASSEMBLING

DISPLAY ARRAY

SUMMARY

An alternate architecture for display systems is reported based on an ensemble of
Nixel display elements running self-assembling software code elements. Each Nixel
element comprises a display element (pixel), lightweight computation sufficient to run
such self-assembling software code elements and local communications. A proof-of
principle hardware implementation (The Vl.O 'Pushpin' Nixel2-D array) was carried out
and used to successfully run gradient and coordinate generating algorithms. Detailed
simulation shows the viability of such an approach to render complex text and graphics.

1

1. Introduction and Background

Consider the scaling limitation for large area, real time display systems. For
systems based on current display architectures (Figure 1), data from a variety of external
image sources (both natural and synthetic) must first pass through a graphics engine for
rendering and formatting. The rendered output is then channeled to a display component
for distribution to individually addressable display elements (pixels). Efforts to scale up
the number of pixels ultimately confront a number of obstacles, both quantifiable
engineering hurdles and more subtle impediments to acceptance by the end users.
Engineering limitations are typically caused by shared resources that bottleneck; e.g.
graphics engines with finite aggregate compute capacity, and data buses with bounded
transmission bandwidth. Manufacturing processes for the displays likewise have
difficulty maintaining adequate yield as the number of pixels per display increases. For
the end customer, ultrahigh resolution wide area displays must be treated as fixed objects
that are mechanically and electrically sensitive, require substantial infrastructure, are
often bulky, are always complex, and are difficult to reconfigure opportunistically. The
last decade has seen dramatic headway made on a portion of this problem space- namely
that of the display component. Emblematic of this is the work on electrophoretic ink (e
ink) where advances in the production and handling of microcapsules have yielded bi
stable, printable displays with the viewing affordances of paper and the dynamic display
updating of a CRT [3] [6].

Nevertheless, progress on the display eomponent has only underscored the unmet
challenges at the system level. Design of back end systems with sufficient rendering
power and transmission capacity to feed a 109 pixel display in real time still outpaces
todats best engineering practice. Contemporary solutions adopt the approach of tiling
the active display area among autonomous display systems operating in synchrony, much
in the spirit of early systems that rack mounted multiple TV's into a rectangular grid.
This program and report looks at carrying this simple approach to a novel extreme.
Specifically, we propose assigning a full-featured graphics system to every pixel in the
system.

2. Technical Approach

Core to this approach is the architectural work on "paintable computing" and its
associated programming methodology based on informational self-assembly [2].
Architecturally, we define a paintable computer as an agglomerate of numerous, finely
dispersed, ultra-miniaturized computing particles; each positioned randomly, running
asynchronously and communicating locally. Individual computing nodes are vanishingly
cheap, freely expendable, and consequently are handled in a bulk fashion. In this report
we present initial work on applying the architecture and programming model of paint to
the design of display systems. In doing so, we motivate the question "can the display
systems themselves become paintable?" The goal is to create display systems with the
same characteristics we target for paint; scalability, ability to reconfigure, resilience to
fault, and self-repair. We entitle such displays Nixel displays.

Section 3 lays out the Nixel display concept based on the underlying paintable
computing ideas above. The section details both the hardware architecture as well as the

2

programming model for self-assembly of mobile code. Section 4 lays out the mechanics
of a specific display task, that of text rendering. In this approach self-replicating process
fragments (''pfrags") interact to construct a 2-D coordinate system.

Figure 1. Process and Data Flow in Display Systems

Image data from multiple sources converges on a single graphics engine for
decompression, color space conversion, rendering, and formatting. Graphics engine
passes rasterized data through high bandwidth channel to display the 2-D scaffold to
migrate to a predetermined positipn. Section 4 extends basic pfrag rendering behavior to
support simple graphics control functions such as translation, scaling, and rotation.
Section 5 samples related work. Section 6 states the conclusions, previews future work
and expands on important system-design question raised in this report.

3. The Nixel Display

The Nixel Display Concept consists of a machine consisting of thousands of sand
grain sized processing nodes, each fitted with a display element and modest amounts of
processing and memory, positioned randomly and communicating locally. Individually,
the nodes are resource poor, vanishingly cheap and necessarily treated as freely
expendable. Yet, when mixed together they cooperate to form a machine whose
aggregate compute capacity grows with the addition of more nodes. The ultimate goal is
to recast computing as a particulate additive to ordinary materials such as building
materials or paint.

3.1 Hardware Architecture

The atomic element of a paintab/e display is the particle in this version entitled
the Vl.O pushpin. Characteristic specs include a '486 class micro, an internal clock
running at- 100 MHz, and 250K-IM of RAM for code and data storage. All the 110 to

3

the micro is gated through a wireless transceiver supporting a minimum full duplex rate
of 1 Mb/s. Communication is via asynchronous links to the nearest neighbors. A power
subsystem harvests power from the immediate environment with minimal constraints on
the particle's placement. Once exposed to power, each particle builds an enumerated list
of the neighbors with which it can communicate. The characteristic specs were enshrined
into both a hardware reference model and a device simulator. In the interim, an initial
COTS (l.Commercial Off-The-Shelf- a system designer's term of endearment to denote
systems constructed exclusively from commercially available components-i.e. no custom
parts) version of the hardware (The V1.0 'Pushpin' Nixel) is complete in small quantities
(Fig. 2) with deployment/coding on an initial ensemble of 1000 proceeding. Table 1
gives the specifications for each part of the Vl.O 'Pushpin' Nixel.

Figure 2. The Vl.O 'Pushpin' Nixel

First pass COTS version of a paint particle. Arranged in a 5-board stack, the 1.25"
x 3" form factor is comparable to that of a saltshaker. Base board (power board) fitted
with catheterized nails that thumbtack into a layered composite consisting of three
conducting planes separated by nonconducting planes. System specs: 32-bit RISC
processor, 66 MHz clock, 256 KB SRAM and 2 :MB FLASH. Communication via 4 Mbs
infrared link to neighbors within a 4.5" radius.

4

Table 1. The Vl.O 'Pushpin' Nixel Parts List

Power
Vl.O 'Push in'

• 3.3v regulation
• Sv regulation

• Drive for Domm./debug plane
• IT AG connector

• Status LED (debug)
• Reset circuitry

• 32-bit Microprocessor, RAM,
FLASH, digital peripherals

• 1.8v supply
• 66 Mhz Oscillator

• 4 Mbs IrDA CODEC
• Crystal + supporting discretes

• Analog transceiver
• Ir photo emitter diode

• Ir photo detector
• Acrylic ball (poor man's Ir

antenna)
• 'birdcage'style enclosure to

support isotropic 4 inch
communication radius

• Interface to processor: 6
configurable lines -

(3 for USART, 3 for Timer)
• Tri-color LED for pixel display

• Sensor: visible light
• Sensor: proximity switch

• Sensor: temperature switch

5

3.2 Programming Model

The programming model is based on the concept of process self-assembly -- the
unsupervised re-assembly of a running process from fragments of code that are mobile in
a virtual environment. Process self-assembly is loosely modeled on the metaphor of
reversible self-assembly in the material worl� in material self-assembly, local chaotic
interactions between autonomous physical elements (biological cells, gas molecules,
Wall street traders) produce global behavior that is well ordered. In process self
assembly, the atomic elements are virtual - autonomous, mobile fragments of code with
state. These process fragments (pfrags) use local messaging to emulate the forces that
direct material self-assembly. They in tum use these simulated forces to direct their
further migration, ultimately arriving at a predetermined spatial ordering.

Fig. 3 illustrates the two cornerstones of this programming model; pfrags that are
self-contained, and memory that is locally shared and probabilistic. The shared memory
model is patterned after bulletin board systems that communicate via lossy update
channels. Every particle contains a local entry to the bulletin board (the Homepage)
where resident executables can read and write tagged data (posts). An additional segment
of memory (the I/0 space) is reserved for mirrored instances of the Homepages from the
neighboring particles. Posts to a given Homepage appear -- with an unbounded latency
and non-zero probability of failure - at the mirror sites on all the particles within the
network neighborhood. For an executable running in a given particle, the Homepage is
read-write and the I/0 space is read-only.

All software executed in paint is represented as process fragments. Fftags are self
contained and sized to fit entirely in the RAM space of a single particle 1. Inter-pfrag
messaging is coded as posts 2 and gated through the I/0 space. All writes must be to the
Homepage. Reads can come from anywhere in the I/0 space. In response to periodic
intemlpts from the particle's OS, a pfrag will scan the I/0 space an� depending on what
it finds there, will execute one of several predefined behaviors - post more data on the
Homepage, request a transfer to a neighboring particle, self-delete, or simply idle. 1. none
the pfrags of this report are larger than 600 bytes in size. 2. 'posts' are defined as variable
length key-value pairs.

6

�-- - .� .,_
·' ;;�r.·<:m

Figure 3. Programming Model

Distributed processes are embodied as ensembles of autonomous migratory
process fragments ("pfrags"). Inter-pfrag communication via tagged messages posted on
local bulletin board memory segment (Homepages). These messages are referred herein
as posts. Copies of the Homepages from neighboring particles assembled into read-only
I/0 space.

The pfrag's continual, free running evaluation of its environment as encoded in
the I/0 space is the key driver for adaptation on Paint . For example, if a pfrag read from
the I/0 space the value of the variables y And z and bound their sum to an internal
variable x, then the pfrag would constantly be re-adding y and z to keep the value of x
current. Section 3 expands on the utility of this approach.

3.3 Simulation Tools

The work reported here predates the availability of the pushpin hardware, and was
consequently developed and tested on the device simulator. Written in Java 1.1, this
simulator models each particle functionally as an instance of a template Java object. An
associated viewer supports visualization, and generation of image sequences. A Gill
allows execution control (Run/Step/Stop), and selection of salient system parameters
such as communication radius, number of particles, degree of randomness in placement,
and placement ofl/0 portals for insertion of pfrags into ensemble.

7

4. Text Display

The method for positioning and display of a text character is patterned after the
behavior of a �'directed seed". Seeds are single pfrags containing a character modeled as a
sequence of geometric primitives, and a rendering algorithm capable of interpreting the
model to compute an RGB pixel value. As a precursor to "planting the seed", two
reference points are externally declared and serve as insertion points for a sequence of
pftags that interact to build a 2-D coordinate system. With this scaffold in place, the text
pftag is then inserted, migrates to its pre-assigned position, and covers a bounded
neighborhood with lightweight copies of itsel£ These copies act as portable rendering
programs that are customized for the rendering of the one single character.

The remainder of this section describes this method in detail, with special
attention on the adaptation strategies employed by individual pftag types. Sample results
illustrate how individual pftag adaptation, together with local messaging, enable groups
of pftags to cooperatively form robust informational structures.

4.1 Anchors and Gradients

Creation of a 2-D coordinate system begins with the selection of two externally
defined reference points 1 and the establishment of a gradient field centered about each of
these points. Gradient fields as a natural phenomena (thermal, chemical, electro
magnetic) have become a common abstraction for messaging in physically distributed
systems, with individual communities developing their own domain-specific variation. In
the paintable PM, the generic gradient is realized as a lightweight pftag that enters the
particle ensemble through a single point and propagates virally, ultimately inserting a
single copy of itself into every particle. Once a region is blanketed, the gradient pftags
message locally to generate a fractional estimate of the shortest path distance back to the
source. 2. Messaging between spatially proximal Gradients is mediated by posts to the
Homepage (Fig. 4). Each Gradient continually scans the I/0 space for posts from
neighboring Gradients. In response to what it finds, a Gradient will either update its own
post, delete itself, or simply do nothing. (Fig. 5) specifies this adaptation procedure.

8

�- ur
...

• ··=- ·�(�;-·\
.

.. -101 •' 1 ' •
. '

t; ""'tJJ : !
• 'f(l) : .

..... [�
___ ,.. �

Figure 4. Gradient - Run Time view

Run time environment as viewed through the 110 space. Host particles contains
only one pfrag - the Gradient. 110 space consists of local Homepage plus mirrored copies
of Homepages from three neighboring particles. Gradient sees its own post in local
Homepage, and posts from other Gradients in two of the three neighbors. Entries in
Gradient post: Tag = key unique to Gradient pfrags ID = identifier used to group
Gradients. HC = integer hop count D = fractional distance. Notes: 1. Placement of the
reference points along a boundary of the particle ensemble eliminates the need for a
symmetry-breaking third point 2. These· distance estimates are normalized to the
communication radius of the particles.

9

1'r.c ail?rotit_'ill �nx:cJ:.�rc <.J; bused: on tw•-' 'HtlUi.:.l.!
• HC � the G.'U��lt•s awn p::l!.tc� bop �"..mlt

• HC:uu.n� L"lc mtmmum bop c.oont 't'turu!' 111 th;; IiO spa\.'t {i..£. The hop l."t.�nt�
ln.mt tile nC£[!hl:lonng Orudicnt;;)

l.i.f' ;:..:;: ,·· HCutn + '..,
t.� t-;�::.:"-dc-i'l!l'tt.<').

l. M� 1h::lt the p;rint at u·hil:hu Ckadietlt Is iu..�&d utt� till: putielc e-.-mble is the
�le �of u F.C""O.Iftllat Gr.du:.nt I!> tc:mtwed, a�Hhe(;r.dtuts witMt:::-= 1 \\'ill
Jlclf-ddetc. l'bt em.� tbnitlocll&.'\.'t v<.�ith.the fXUticle emcmble ul'tlll1t pfrag, el
Malllit'r OrdiliL'Ut with f.:C:C• Is�

Figure 5. Gradient- Adaptation Procedure

At the end of every round of adaptation, the Gradient recomputes a fractional
estimate of distance by averaging over the entire neighboring integer hop counts. It then
includes this fractional value in its Homepage post. This perpetual, free running re
evaluation of the environment as represented by the I/0 space is core to the paintable
approach to adaptation and self-repair.

4.2 2-D Coordinates
The arrival at one anchor point of the Gradient from the other anchor triggers the

insertion of a Coordinate pftag. Coordinate virally deposits a single copy of itself into
every particle. Coordinate uses the two Gradient distance estimates to synthesize a 2D
coordinate that it then includes in its Homepage post (Fig. 7a). These coordinates are

normalized to the radius of the network link that defines a particle's neighborhood. The
error bound on the coordinate depends directly on the accuracy of the Gradient distance
estimate. This error performance has been treated both analytically and experimentally in
the context of amorphous computing [9]. As with the Gradient pftag, adaptation in the
Coordinate pftag is a by-product of the free running generative process (Fig. 6). Fig. 7 B
shows the response of this process to a real failure. The particles within an irregularly
shaped patch were disabled. The 2-D distortion in the immediate vicinity of the failure is
due to the fact that the Gradient's shortest-path distance estimates to the corresponding
anchor point no longer map to Euclidean distance. However the normalized amplitude of
this distortion falls off with increasing distance from the failure zone. Self-repair follows
if the area is repopulated with new particles.

10

l.if <'!ithnr <ir«dicmt. �G n,.!.n:>i��\1.
then M!!.!-d6'!ht.�.

2.el88 if il�! �u!.nffJCt.t'<d ucdq.lllJ,)!' !.:1 :om:.d,
� pt'()'Ptllf•lt.e •• copy to t:hat n�iqhbm:.

J.el.se#
rQt:(i tn+;; nrr.ld.ir.:��t :;c:!'ltfi, r��-triCJn,,ula':'.�: .md updiltG th0
loe;al Coutd!.u,. t� p(:;.st -rl�l r.f!c;Hs:ml v.

Figure 6. Adaptation Rules for Coordinate pfrag

Figure 7. Coordinate System: Construction & Adaptation

Initial state is 3000·particle ensemble devoid of pfrags. In the construction phase
(a), two anchor points are externally positioned (bottom) and assigned a 2·0 position.
Gradient fields, emanating from each anchor, append the assigned 2·0 position to their
Homepage posts. The arrival of a Gradient from one anchor at the other anchor triggers
the insertion of a Coordinate pfrag that uses the posted Gradient distances to estimate a 2-
D position. Estimation procedure is free running, and automatically adapts to subsequent
particle failure. Distortion caused by an areal failure (darkened area near center) is
localized (b).

4.3 Text Rendering
Individual text characters are embodied as single pfrags. A Text pfrag contains

three elements in its state vector:
1. A model of the character expressed as geometric primitives such as lines, arcs and
splines.

2. A preferred position on the 2-D coordinate system (relative to the 2-D coordinate
system).

11

3. A bounding box (likewise relative to the 2-D coordinate system) A text pftag
enters the particle ensemble at a random point, migrates to its preferred 2-D location (Fig.
8 a), and then spawns lightweight copied of itself. The spawned copies limit their
propagation to the spatial patch defined by the bounding box. The copies then compare
the local 2-D coordinate to the character model, compute the corresponding ROB pixel
value, and post this value in the HomePagel . Fig. 8b illustrates this approach applied to a
single character; an upper case 'A'. The 'A' is encoded as three straight lines, each
defined by two endpoints. The rendering procedure calls for:

-reading the local2-D coordinate,
•calculating the shortest path distance to the nearest geometric primitive (a stroke)
•computing a monochrome pixel value by inversely weighting a saturated

intensity, by the distance from the nearest stroke.

Note how this use of intermediary gray levels computed as a function of distance
from a stroke, produces the anti-aliasing lmown to be important for legibility [4].

(a) (b)

Figure 8. Text Seed: Positioning and Rendering

An ensemble of 1000 particles is initially configured with a coordinate system
(not shown) relative to two anchor points (shown as 110 ports along bottom edge). A
single Text seed (red) enters through a third 1/0 port and migrates toward a coordinate
that has been pre-stored in its internal state' vector.(a)(b) Once in position, the original
seed (red) spawns lightweight copies of itself. The copies limit their propagation to the
area defined by their internally specified bounding box. For each particle within the
bounding box, the seed's copy copares the local coordinate against the geometric model
of the character to arrive at an anti-aliased pixel value.

Two crucial cOmponents of this approach are adaptation, and inter-pfrag
messaging between the Text seed and its copies. In order to message to its spawned
copies, the Text pfrag employs a broadcast technique similar to that of the Gradient. Posts
from the Text pfrags contain an integer hop count and a variable length payload appended
to the end of the post (Fig. 9b). The seed Text pfrag assumes a hop count that is fixed to

12

zero. Text copies adopt a hop count that reflects their distance from the seed (Fig 9a).
The Text seed signals to its copies by posting a new payload containing an incremented
revision number. Copies seeing a recent payload in a post from a neighbor with a smaller
hop count, read this payload and append it to their own post - effectively propagating the
change. Beyond a revision number, payloads can contain any amount of data in any
prearranged format. However in this work the payloads always contain new state vector
data.

The second pillar of this approach is an asynchronous, free running adaptation.
The Text pfrag's instantaneous behavior is defined by its adaptation procedure operating
on the static state vector and the dynamic environment. The procedure as described in
Fig. 10 supports basic operations such as erasure of the character, in addition to the
graphics transformations of the next section.

5. Graphics Control

Simple graphics control is recast as message passing and manipulation of the
adaptation rules. With changes in the state vector automatically reflected in the rendered
character, graphics· manipulation can be effected by directed changes of the state vector.
In our sample embodiment, an external agency broadcasts a coded graphics command 2
to the Text seeds. Each seed then parses the message, encodes the state changes into a
payload, and updates its posts to include the new payload. The payload eventually arrives
at the copies, which in turn internalize the new state data. The adaptation rules do the
rest.

Fig. 11 illustrates this process for translation and scaling. Translation is expressed as a 2-
D offset to a Text pfrag's preferred position. The seed moves, and messages the new
center position to its copies. Those copies that find themselves outside the new bounding
box self-delete. Other copies suddenly find unpopulated neighboring particles that are
within the new bounding box, and respond by propagating new copies to

13

1'ltc udapUition rules lor the Spl\\'1\Clil cluld pfmps arc di(fC!ront lh:u!lllLllie t'or the
prima�' sc� .

.:..if n� coo.r<iinatlti� pf)!�t::: �::"(! found on the loe�l
H¢l'!ltd:•ac;�,
then GQlf-clGl�te.

2.elae if '' nei�hbo:ri:r.:-{:1' �·:lrtit:l� i.s .inoid� th� ho�mdin�

box but doi'J!� not. conti.l�n •l pont fl:·om <'l copy pfr.-�q,
then proJ:mgr�tE'I (J copy tfJ th0 uni��!ectQd nP.i.ghbor·.

l.else if a rleiqhbr)r •;Ii ::h ,. pc;,sr.ed hop co�nt '�mall$r
thiln t:-.e lot:<ll hop �aunt. hf.!S a hiqhtl;..r pnylo1:1d inde:r<,
then copy the n.i:l�f p<.lylo..J.d �nd updilt:{! post.

4 .else i.f thf! updr.o�f;d pn';lo."lrJ chi)nges the ::Ooundinq hox
.;md th<li p!rnq �r� c�t:o!dd� th� new hO\mdinq box,
then ��lf-d�l�t�.

S.else
rcc:ol11l>'�t(l! �nd r�po.st: the RCiB VOllue.

Figure 10. Text pfrag: Adaptation Rules for Spawned Copies

the unpopulated neighbors. All copies recomputed the local pixel color. Translational
offsets above some threshold have the effect of sliding the rendered character out of view
(Fig. l la). However, even in cases where the copies are completely absent, the seed
remains waiting to restore the character should further translation again bring the
character into view.

Scaling can likewise be affected by a change in the bounding box. Fig. llb
illustrates the effect of scaling the bounding box by a factor of 0.95. The simple vehicle
of resizing the bounding box suffices only within a bounded range of scale factors. As the
scale factor continues to shrink, the copies will be able to apply rendering schemes of
near arbitrary sophistication to maintain legibility.

(a) �)
Figure 11. Translation and Scaling

1 4

6. Related Work

The vision of deeply embedded, finely grained, freely configurable computing is
one that is shared among multiple communities. One such community proceeds from the
assumption that relentless cost drivers in the established silicon IC sector will deliver
much of the desired hardware functionality in the near term. In addition to Nixels, this
guild includes groups working on wireless sensor networks [11], and those working on
denser 'amorphous' computing meshes programmed around biological metaphors. At the
level of node architecture, Nixels have the strongest commonality with the evershrinking
sensomet nodes [7]. However the two camps diverge in their approach to software -
largely due to the difference in target inter-node spacing (meters vs. millimeters) and the
attendant application domains. The distributed software architecture based on process
self-assembly is but one sample of a broader trend toward modeling distributed software
systems on the metaphor of self-assembly as it occurs in the material world. A closely
related effort in amorphous computing drew inspiration from biology to develop a
programming model based on programmed self-assembly [1] and demonstrated its utility
over a wide range of pattern formation; both 2-D and 3-D.

15

6. Conclusions and Recommendations

Much woik remains and the results to date are only suggestive. Yet, to the degree
that the challenges ofNixel displays yield to continuing research the work outlined in this
report demonstrates that such an approach may have a significant impact in overcoming
the important limitations of existing displays. Revisiting Fig. 1, the fine grain spatial
distribution of the graphics function in the Nixel display approach removes the two
bandwidth bottlenecks associated with channeling all input into a single point for serial
processing, followed by a redistribution to the pixel raster for display. Nixel systems,
where the nodes are truly autonomous, where there are no shared resources and where the
inter-node messaging is strictly local, all scale freely - at least until more subtle bounds
take hold. Self-repair and the ability to freely reconfigure likewise follow ftom
modularized software built around the requirements of spatial locality and ongoing
adaptation.

It is worth calculating the cost of manufacturing of a Nixel display. Assuming
$16/sq. in. for an 8-inch silicon wafer, near perfect yield, and particle die size of 0.25

llUD, an ensemble of 106 particles {106 pixels) would cost-$� not wholly out of line
with current costs of plasma displays for instance but allowing a completely flexible
display disposed on a nearly arbitrary surface.

A compliment to lowering the system cost is to justify the system cost This
suggests a strategy of broadening the application domain by driving the development of a
"Nixel display' toward subsumption of additional components ftom the standard
computing architecture. The pixel display that already annexed the graphics controller
should also incorporate the processor, the memory, the external networking, and the
remaining I/0 modalities3 into a single distributed machine.

What can this distributed machine do? Work to date has demonstrated its capacity
for storage, communication and signal processing in the context of plausible applications
[2]. Ongoing woik is building on these basics to realize distributed estimation and
control. In those applications where the underlying Nixel is perfonning some useful,
compute-intensive task, addition of display becomes an incremental cost.

One of the most demanding open points relating to Nixel displays involves the
use of increasingly sophisticated image models for both decoding and encoding, and the
need to revisit basic hardware assumptions as the particle ensemble scales up to 1 ol or
more Nixels. The Nixel architecture naturally favors compute load over transfer
bandwidth. At least initially, this biases Nixels toward display of model-based coded
imagery. The nuance in this case being that the models should themselves be amenable to
a distributed representation.

The text characters of this report were coded using a pen stroke as an image
model. The quest for ever richer display output will drive the creation of distributed
versions of ever more complex models; distributed postscript for imagery coded
procedurally as a sequence of pen strokes, motion-compensated frequency
transformations for natural imagery coded a'la MPEG-1 and MPEG-2, a distributed
variant of openGL for synthetic imagery, and ultimately, a distributed hybrid in the vain
of MPEG-4 and MPEG-7. The dual to model-based decoding is model-based encoding.
As a massive nonlinear search through a collection of heterogeneous models, model
based encoding is an interesting problem in its own right. The relevance to the Nixel

16

display problem is that coded imagery is only as rich and/or efficient as the models that
the images are coded against. At some point, the models employed for display on Nixel
hardware will necessarily take on characteristics unique to that distributed environment.
We will probably have to at least visit issues relating to; coding of arbitrary pen strokes
into a distributed postscript, parallel variants of hybrid waveform coder for natural
images, and synthesis of open GIAike descriptions of natural objects and scenes.

Finally, in addition to software, a significant push is anticipated to evolve the
hardware. Both the simulator and the pushpin environments were characterized by - 102
Nixels. Figure 12 below shows a gradient algorithm successfully running on- fifty Vl.O
Nixels. As discussed above such an algorithm encompasses many of the essential
features for a fully scalable Nixel display and represents solid proof of principal for the
scalability of the Nixel system. With the milestone results represented in this report we
eagerly look forward to scaling the Nixel system to 103 nixels and beyond.

Figure 12. A 2-D Array ofVl.O 'Pushpin' Nixels Running a Gradient Algorithm.

17

This document reports research undertaken at the
U.S. Army Research, Development and Engineering
Command, Natick Soldier Center, Natick, MA, and
ha� been assigned No. NATICK!fR.-0 1 loJg" in a

senes of reports approved for publication.

References
[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E.
Rauch, G. J. Sussntan, and R. Weiss Amorphous Computing Communications of the
ACM, vol. 43, pp. 74-82, 2000.
[2] W J. Butera, Programming a Paintable Computer, Ph.D. in Media Arts and Sciences.
Cambridge, MA: Massachusetts Institute of Technology, 2002, pp. 1-176.
[3] B. Comiskey, J.D. Albert, H. Yosbizawa, and J. Jacobson, An electrophoretic ink for
allprinted reflective displays, Nature, vol. 394, pp. 253-255, 1998.
[4] J. Foley, A. van D� S. Feiner, and J. Hughes, Computer Graphics: Principles and
Practice, Reading, Massachusetts: Addison-Wesley, 1991. pp.132-142
[5] L. Girod, V. Bychkobskiy, J. Elson, and D. Estrin. Locating tiny sensors in time and
space: A case study. In Proceedings of the International Conference of Computer Design
(ICCD) 2002.
[6] J. Jacobson, B. Comiskey, B. Turner, J. Albert, and P. Tsao, The last book, IBM
Sytems Journal, vol. 36, pp. 457-463, 1997.
[7] J. L. Hill, System Architecture for Wireless Sensor Networks, Ph.D. in Computer
Science. Berkeley CA: University of California, Berkeley, 2003, pp. 1-186.
[8] K. Langendoen and N. Reijers. Distributed localization in wireless sensor networks: a
quantitative comparison. The International Journal of Computer and Telecommunication

Networking, 43(4):499- 518, November 2003.
[9] R. Nagpal, Organizing a Global Coordinate System from Local Information on an
Amorphous Computer, Massachusetts Institute ofTechnology, Cambridge,
Massachusetts, A.I. MEMO 1666, August 12, 1999.
[10] K. Pahlavan, L. Xinrong, and J. Makela. Indoor geolocation science and technology.
IEEE Communications Magazine, 40(2):112-118, February 2002.
[11] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, Smart Dust: Communicatng
with a Cubic-Millimeter Computer Computer, vol. 34, pp. 44-51, 2001

18

